scipeds.data.engine¶
              IPEDSQueryEngine(db_path: Optional[Path] = SCIPEDS_CACHE_DIR / DB_NAME)
¶
    A structured way to query the IPEDS table to format data for visualization
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| db_path | Optional[Path] | Path to pre-processed database file. Defaults to CACHE_DIR / DB_NAME. | SCIPEDS_CACHE_DIR / DB_NAME | 
Raises:
| Type | Description | 
|---|---|
| FileNotFoundError | Pre-processed database file not found. | 
            get_df_from_query(query: str, query_params: Optional[Dict[str, Any]] = None, show_query: bool = False) -> pd.DataFrame
¶
    Return the dataframe result of the provided SQL query on the pre-processed duckdb
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| query | str | SQL query (using duckdb syntax) | required | 
| query_params | Dict[str, Any] | Prepared statement variables for query. Defaults to None. | None | 
| show_query | bool | Whether to print the query and parameters before executing. Defaults to False | False | 
Returns:
| Type | Description | 
|---|---|
| DataFrame | pd.DataFrame: Data returned by query | 
            list_tables() -> List[str]
¶
    List all tables in the duckdb
Returns:
| Type | Description | 
|---|---|
| List[str] | List[str]: A list of all available tables | 
            get_cip_table() -> pd.DataFrame
¶
    Get a table of every unique 2020 CIP Code
Returns:
| Type | Description | 
|---|---|
| DataFrame | pd.DataFrame: Data frame of CIP codes and corresponding taxonomy titles | 
            get_institutions_table(cols: str | list[str] | None = None) -> pd.DataFrame
¶
    Get institution characteristics table, optionally with specified columns
Returns:
| Type | Description | 
|---|---|
| DataFrame | pd.DataFrame: Data frame of institution characteristics |